CURL, often just “curl,” is a free command line tool. It uses URL syntax to transfer data to and from servers. Curl is a widely used because of its ability to be flexible and complete complex tasks. For example, you can use curl for things like user authentication, HTTP post, SSL connections, proxy support, FTP uploads, and more!
Curl is also used in cars, television sets, routers, printers, audio equipment, mobile phones, tablets, settop boxes, media players and is the. Arm Curl; See Forearm for exercises for the Brachioradialis. Exercise List Notes ©1999-2021 ExRx.net LLC.
Show Mobile Notice
Section 6-1 : Curl and Divergence
Before we can get into surface integrals we need to get some introductory material out of the way. That is the purpose of the first two sections of this chapter.
In this section we are going to introduce the concepts of the curl and the divergence of a vector.
Let’s start with the curl. Given the vector field (vec F = P,vec i + Q,vec j + R,vec k) the curl is defined to be,
There is another (potentially) easier definition of the curl of a vector field. To use it we will first need to define the (nabla ) operator. This is defined to be,
We use this as if it’s a function in the following manner.
[nabla f = frac{{partial f}}{{partial x}},vec i + frac{{partial f}}{{partial y}},vec j + frac{{partial f}}{{partial z}},vec k]
So, whatever function is listed after the (nabla ) is substituted into the partial derivatives. Note as well that when we look at it in this light we simply get the gradient vector.
Using the (nabla ) we can define the curl as the following cross product,

We have a couple of nice facts that use the curl of a vector field.
Facts
- If (fleft( {x,y,z} right)) has continuous second order partial derivatives then ({mathop{rm curl}nolimits} left( {nabla f} right) = vec 0). This is easy enough to check by plugging into the definition of the derivative so we’ll leave it to you to check.
- If (vec F) is a conservative vector field then ({mathop{rm curl}nolimits} vec F = vec 0). This is a direct result of what it means to be a conservative vector field and the previous fact.
- If (vec F) is defined on all of ({mathbb{R}^3}) whose components have continuous first order partial derivative and ({mathop{rm curl}nolimits} vec F = vec 0) then (vec F) is a conservative vector field. This is not so easy to verify and so we won’t try.

Curl Command
Determine if (vec F = {x^2}y,vec i + xyz,vec j - {x^2}{y^2},vec k) is a conservative vector field. Show SolutionSo, all that we need to do is compute the curl and see if we get the zero vector or not.
[begin{align*}{mathop{rm curl}nolimits} vec F & = left| {begin{array}{*{20}{c}}{vec i}&{vec j}&{vec k}{displaystyle frac{partial }{{partial x}}}&{displaystyle frac{partial }{{partial y}}}&{displaystyle frac{partial }{{partial z}}}{{x^2}y}&{xyz}&{ - {x^2}{y^2}}end{array}} right| & = - 2{x^2}y,vec i + yz,vec k - left( { - 2x{y^2},vec j} right) - xy,vec i - {x^2}vec k & = - left( {2{x^2}y + xy} right)vec i + 2x{y^2},vec j + left( {yz - {x^2}} right)vec k & ne vec 0end{align*}]So, the curl isn’t the zero vector and so this vector field is not conservative.
Next, we should talk about a physical interpretation of the curl. Suppose that (vec F) is the velocity field of a flowing fluid. Then ({mathop{rm curl}nolimits} vec F) represents the tendency of particles at the point (left( {x,y,z} right)) to rotate about the axis that points in the direction of ({mathop{rm curl}nolimits} vec F). If ({mathop{rm curl}nolimits} vec F = vec 0) then the fluid is called irrotational.
Let’s now talk about the second new concept in this section. Given the vector field (vec F = P,vec i + Q,vec j + R,vec k) the divergence is defined to be,
There is also a definition of the divergence in terms of the (nabla ) operator. The divergence can be defined in terms of the following dot product.
There really isn’t much to do here other than compute the divergence.
[{mathop{rm div}nolimits} vec F = frac{partial }{{partial x}}left( {{x^2}y} right) + frac{partial }{{partial y}}left( {xyz} right) + frac{partial }{{partial z}}left( { - {x^2}{y^2}} right) = 2xy + xz]We also have the following fact about the relationship between the curl and the divergence.
[{mathop{rm div}nolimits} left( {{mathop{rm curl}nolimits} vec F} right) = 0] Example 3 Verify the above fact for the vector field (vec F = y{z^2},vec i + xy,vec j + yz,vec k). Show SolutionCurl Math
Let’s first compute the curl.
[begin{align*}{mathop{rm curl}nolimits} vec F & = left| {begin{array}{*{20}{c}}{vec i}&{vec j}&{vec k}{displaystyle frac{partial }{{partial x}}}&{displaystyle frac{partial }{{partial y}}}&{displaystyle frac{partial }{{partial z}}}{y{z^2}}&{xy}&{yz}end{array}} right| & = z,vec i + 2yz,vec j + y,vec k - {z^2}vec k & = zvec i + 2yz,vec j + left( {y - {z^2}} right)vec kend{align*}]Now compute the divergence of this.
[{mathop{rm div}nolimits} left( {{mathop{rm curl}nolimits} vec F} right) = frac{partial }{{partial x}}left( z right) + frac{partial }{{partial y}}left( {2yz} right) + frac{partial }{{partial z}}left( {y - {z^2}} right) = 2z - 2z = 0]We also have a physical interpretation of the divergence. If we again think of (vec F) as the velocity field of a flowing fluid then ({mathop{rm div}nolimits} vec F) represents the net rate of change of the mass of the fluid flowing from the point (left( {x,y,z} right)) per unit volume. This can also be thought of as the tendency of a fluid to diverge from a point. If ({mathop{rm div}nolimits} vec F = 0) then the (vec F) is called incompressible.
The next topic that we want to briefly mention is the
The Laplace operator is then defined as,
[{nabla ^2} = nabla centerdot nabla ]The Laplace operator arises naturally in many fields including heat transfer and fluid flow.
The final topic in this section is to give two vector forms of Green’s Theorem. The first form uses the curl of the vector field and is,
where (vec k) is the standard unit vector in the positive (z) direction.
The second form uses the divergence. In this case we also need the outward unit normal to the curve (C). If the curve is parameterized by
[vec rleft( t right) = xleft( t right)vec i + yleft( t right)vec j]then the outward unit normal is given by,
[vec n = frac{{y'left( t right)}}{{left| {vec r'left( t right)} right|}}vec i - frac{{x'left( t right)}}{{left| {vec r'left( t right)} right|}}vec j]Here is a sketch illustrating the outward unit normal for some curve (C) at various points.
The vector form of Green’s Theorem that uses the divergence is given by,
April 15, 2021 | About behavior of Curl applets running in Internet Explorer |
---|---|
January 29, 2021 | Curl RTE 8.0.11 and Curl CDE 8.0.11001 is released. |
August 30, 2019 | Curl RTE 8.0.10 and Curl CDE 8.0.10001 is released. |
March 25, 2019 | Changes to Supported Operating Systems of Appsnaut |
March 25, 2019 | Changes to Supported Operating Systems of Curl RTE Products |
January 10, 2018 | Curl RTE 8.0.8 and Curl CDE 8.0.8001 is released. |
June 5, 2017 | Maintenance notification. |
March 30, 2016 | Curl RTE 8.0.7 and Curl CDE 8.0.7001 was released. |
November 13, 2015 | Curl supports Windows 10 with the release of Curl RTE 8.0.6, 7.0.7 and CDE 8.0.6001. |
February 12, 2015 | Curl supports Internet Explorer 11 on Windows7 and Windows8.1 |
November 17, 2014 | Caede 3.0 Release! |
June 23, 2014 | Curl RTE 8.0.5 and Curl CDE 8.0.5001 was released. |
November 11, 2013 | Caede 2.1.0 was released. |
September 30, 2013 | Curl RTE 8.0.4 and Curl CDE 8.0.4001 was released. |
June 6, 2013 | Availability of version 8.0.4001 Curl CDE and Curl RTE 8.0.4 |
May 9, 2013 | If you apply the Java update (6u45 or newer), the CDE will fail to work. |
April 16, 2013 | Curl supports Internet Explorer 10 on Windows7 |
January 22, 2013 | Curl supports Windows 8 with the release of Curl RTE 7.0.6, 6.0.9. |
